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Start with some basics: display 
devices

l Just how do we get images onto a screen?
l Most prevalent device: CRT

l Cathode Ray Tube
l AKA TV tube



  

5

Cathode Ray Tubes

l Cutting edge 1930’s technology
l (basic device actually 100 yrs old)
l Vacuum tube (big, power hog, …)
l Refined some, but no fundamental changes

l But still dominant
l Because TVs are consumer item
l LCD’s just starting to challenge
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How a CRT works (B/W)

Vacuum Tube 

Negative charge Positive charge
15-20 Kv

Phosphor
Coating

Electron Gun

Deflection 
Coils
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Move electron beam in fixed 
scanning pattern

l“Raster” lines across screen

lModulate intensity along line 
(in spots) to get pixels
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Pixels determined by 2D array of 
intensity values in memory

l “Frame buffer”
l Each memory cell controls 1 pixel

l All drawing by placing values in memory

42

D
AC
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Adding color

lUse 3 electron guns
lFor each pixel place 3 spots of 
phosphor (glowing R, G, & B)

lArrange for red gun to 
hit red spot, etc.
lRequires a lot more precision than simple B/W
lUse “shadow mask” behind phosphor spots to 

help
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Color frame buffer

l Frame buffer now has 3 values for each pixel
l each value drives one electron gun
l can only see ~ 2^8 gradations of intensity for each of R,G,&B
l 1 byte ea => 24 bits/pixel => full color
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Other display technologies: LCD

l Liquid Crystal Display
l Discovered in 1888 (!) by Reinitzer
l Uses material with unusual physical properties: liquid crystal

l rest state: rotates polarized light 90°
l voltage applied: passes as is
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Layered display

l Layers

l In rest state: light gets through
l Horizontally polarized, LC flips 90°, becomes vertically polarized
l Passes through 

Horizontal Polarizer
Liquid Crystal

Vertical Polarizer



  

13

Layered display

l Layers

l In powered state: light stopped
l Horizontally polarized, LC does nothing, stopped by vertical filter

Horizontal Polarizer
Liquid Crystal

Vertical Polarizer
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Lots of other interesting/cool 
technologies

l Direct retinal displays
l University of Washington HIT lab

l Set of 3 color lasers scan image directly onto retinal surface
l Scary but it works
l Very high contrast, all in focus
l Potential for very very high resolution
l Has to be head mounted
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All these systems use a frame 
buffer

l Again, each pixel has 3 values
l Red, Green Blue

l Why R, G, B?
l R, G, and B are particular freq of light
l Actual light is a mix of lots of frequencies 
l Why is just these 3 enough?
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Why R, G, & B are enough

l Eye has receptors (cones) that are sensitive to (one of) these
l Eye naturally quantizes/samples frequency distribution

l 8-bit of each does a pretty good job, but…  some 
complications
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Complications

l Eye’s perception is not linear (logarithmic)
l CRT’s (etc.) do not respond linearly
l Different displays have different responses

l different dynamic ranges
l different color between devices!

l Need to compensate for all of this
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Gamma correction

l Response of all parts understood (or just measured)
l Correct: uniform perceived color

l Normally table driven
l 0…255 in (linear intensity scale)
l 0…N out to drive guns

§ N=1024 or 2048 typical



  

19

Unfortunately, gamma correction 
not always done

l E.g., TV is not gamma corrected

Knowing RGB values does not tell you what color you will get! 

l For systems you control: do gamma correction
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24 bits/pixel => “true color,” but 
what if we have less?

l 16 bits/pixel
l 5 each in RGB with 1 left over
l decent range (32 gradations each)

l Unfortunately often only get 8
l 3 bits for GB, 2 for R
l not enough
l Use a “trick” instead
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Color lookup tables (CLUTs)

R G B
0:

R G B
1:

17 236 129
2:

R G B
255:

...
2

l Extra piece of hardware
l Use value in FB as index into CLUT

l e.g. 8 bit pixel => entries 0…255

l Each entry in CLUT has full RBG value used to drive 3 guns
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Palettes

l 8 bits / pixel with CLUT 
l Gives “palette” of 256 different colors
l Chosen from 16M
l Can do a lot better than uniform by picking a good palette for 

the image to be displayed (nice algorithms for doing this)



  

Imaging Models
What does the hardware “look like” to the higher 
levels of software?
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Software models of output
(Imaging models)

l Start out by abstracting the HW
l What does the hardware “look like” to the higher levels of 

software?
l Earliest imaging models abstracted early hardware: vector 

refresh
l stroke or vector (line only) models

l “Display list” containing end points of lines to be drawn
l System just cycles through the display list, moving the electron 

gun between endpoints
l Arbitrarily positionable electron gun, rather than the “sweep” 

pattern seen in raster imaging.
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Vector models

l Advantages
l can freely apply mathematical xforms

l Scale rotate, translate
l Only have to manipulate endpoints

l Disadvantages
l limited / low fidelity images

l wireframe, no solids, no shading
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Current dominant: Raster models

l Most systems provide model pretty close to raster display HW
l integer coordinate system
l 0,0 typically at top-left with Y down
l all drawing primitives done by filling in pixel color values (values 

in FB)
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Issue: Dynamics

l Suppose we want to “rubber-band” a line
over complex
background

l Drawing line is relatively easy
l But how do we “undraw” it?
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Undrawing things in raster model
l Ideas?  

(red, su, xo, pal, fwd)
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Undrawing things in raster 
models	


lFour solutions:
l1) Redraw method

lRedraw all the stuff under
lThen redraw the line

l Relatively expensive (but HW is fast)
lNote: don’t have to redraw all, just “damaged” area

l Simplest and most robust                 (back)
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How to undraw 

l 2) “Save-unders”
l When you draw the line, remember what pixel values were 

“under” it
l To undraw, put back old values
l Issue: (what is it?)
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How to undraw 
l 2) “Save-unders”

l When you draw the line, remember what pixel values were “under” it
l To undraw, put back old values
l Issue: what if “background” changes

l Tends to either be complex or not robust                           (back)
l Typically used only in special cases 
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How to undraw

l 3) Use bit manipulation of colors
l Colors stored as bits
l Instead of replacing bits XOR with what is already there

l A ^ B ^ B == ?
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How to undraw

l 3) Use bit manipulation of colors
l Colors stored as bits
l Instead of replacing bits XOR with what is already there

l A ^ B ^ B == A (for any A and B)
l Draw line by XOR with some color
l Undraw line by XOR with same color
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Issue with XOR?

l What is it?
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Issue with XOR

l Colors unpredictable
l SomeColor ^ Blue == ??

l Don’t know what color you will get
l Not assured of good contrast

§ Ways to pick 2nd color to maximize contrast, but still get “wild” colors
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Undraw with XOR

l Advantage of XOR undraw
l Fast
l Don’t have to worry about what is “under” the drawing, just 

draw
l In the past used a lot where dynamics needed 

l May not be justified on current HW                       (back)
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How to undraw

l 4) Simulate independent bit-planes using CLUT “tricks”
l Won’t consider details, but can use tricks with CLUT to simulate 

set of transparent layers
l Probably don’t want to use this solution, but sometimes used for 

special cases like cursors           (back)
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Higher level imaging models

l Simple pixel/raster model is somewhat impoverished
l Integer coordinate system
l No rotation (or good scaling)
l Not very device independent
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Higher level imaging models

l Would like:
l Real valued coordinate system

l oriented as Descarte intended?
l Support for full transformations

l real scale and rotate
l Richer primitives

l curves



  

Stencil-and-Paint

40
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Higher level imaging models

l Would like:
l Real valued coordinate system

l oriented as Descarte intended?
l Support for full transformations

l real scale and rotate
l Richer primitives

l curves
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Stencil and paint model

l All drawing modeled as placing paint on a surface through a 
“stencil”
l Stencil modeled as closed curves (e.g., splines)

l Issue: how do we draw lines?
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Stencil and paint model
l All drawing modeled as placing paint on a surface through a 

“stencil”
l Modeled as closed curves (splines)

l Issue: how do we draw lines?
l (Conceptually) very thin stencil along direction of line
l Actually special case & use line alg.
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Stencil and paint model

l Original model used only opaque paint
l Modeled hardcopy devices this was developed for (at Xerox PARC)

l Current systems now support “paint” that combines with “paint” 
already under it
l e.g., translucent paint (“alpha” values)
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Stencil and paint examples
l In most cases, implemented at a much higher layer than the raw hardware 

(e.g., in the Window System or Toolkit, which we’ll talk about soon...)

l Postscript is based on this approach
l Implemented in printer’s hardware (often)

l NeXTstep:  Display Postscript
l Brought same imaging model used for hardcopy output to interactive graphics

l Mac OS X
l Derived from NeXTstep, uses DisplayPDF as its imaging model

l Windows, starting with Vista
l Aero

l New Java drawing model (Java2D) provides a stencil-and-paint imaging 
model, implemented completely in the Toolkit
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Stencil and paint pros and cons

l Advantages
l Resolution & device independent

l does best job possible on avail HW
l Don’t need to know size of pixels

l Can support full transformations
l rotate & scale
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Stencil and paint pros and cons

l Disadvantages
l Slower

l Less and less of an issue
l But interactive response tends to be dominated by redraw time

l Much harder to implement
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Stencil and paint pros and cons

l Stencil and paint type models generally the way to go
l But have been slow to catch on

l Market forces tend to keep us with old models
l Much harder to implement

l Finally became mainstream around 2006


