

Output: Hardware

Output System Layers

2

Hardware (e.g., graphics card)

Operating System

Window System

Application 1

Swing

Application 2

SWT

Application 3

UIKit...

Output Hardware

3

4

Start with some basics: display
devices

l Just how do we get images onto a screen?
l Most prevalent device: CRT

l Cathode Ray Tube
l AKA TV tube

5

Cathode Ray Tubes

l Cutting edge 1930’s technology
l (basic device actually 100 yrs old)
l Vacuum tube (big, power hog, …)
l Refined some, but no fundamental changes

l But still dominant
l Because TVs are consumer item
l LCD’s just starting to challenge

6

How a CRT works (B/W)

Vacuum Tube

Negative charge Positive charge
15-20 Kv

Phosphor
Coating

Electron Gun

Deflection
Coils

7

Move electron beam in fixed
scanning pattern

l“Raster” lines across screen

lModulate intensity along line
(in spots) to get pixels

8

Pixels determined by 2D array of
intensity values in memory

l “Frame buffer”
l Each memory cell controls 1 pixel

l All drawing by placing values in memory

42

D
AC

9

Adding color

lUse 3 electron guns
lFor each pixel place 3 spots of
phosphor (glowing R, G, & B)

lArrange for red gun to
hit red spot, etc.
lRequires a lot more precision than simple B/W
lUse “shadow mask” behind phosphor spots to

help

10

Color frame buffer

l Frame buffer now has 3 values for each pixel
l each value drives one electron gun
l can only see ~ 2^8 gradations of intensity for each of R,G,&B
l 1 byte ea => 24 bits/pixel => full color

11

Other display technologies: LCD

l Liquid Crystal Display
l Discovered in 1888 (!) by Reinitzer
l Uses material with unusual physical properties: liquid crystal

l rest state: rotates polarized light 90°
l voltage applied: passes as is

12

Layered display

l Layers

l In rest state: light gets through
l Horizontally polarized, LC flips 90°, becomes vertically polarized
l Passes through

Horizontal Polarizer
Liquid Crystal

Vertical Polarizer

13

Layered display

l Layers

l In powered state: light stopped
l Horizontally polarized, LC does nothing, stopped by vertical filter

Horizontal Polarizer
Liquid Crystal

Vertical Polarizer

14

Lots of other interesting/cool
technologies

l Direct retinal displays
l University of Washington HIT lab

l Set of 3 color lasers scan image directly onto retinal surface
l Scary but it works
l Very high contrast, all in focus
l Potential for very very high resolution
l Has to be head mounted

15

All these systems use a frame
buffer

l Again, each pixel has 3 values
l Red, Green Blue

l Why R, G, B?
l R, G, and B are particular freq of light
l Actual light is a mix of lots of frequencies
l Why is just these 3 enough?

16

Why R, G, & B are enough

l Eye has receptors (cones) that are sensitive to (one of) these
l Eye naturally quantizes/samples frequency distribution

l 8-bit of each does a pretty good job, but… some
complications

17

Complications

l Eye’s perception is not linear (logarithmic)
l CRT’s (etc.) do not respond linearly
l Different displays have different responses

l different dynamic ranges
l different color between devices!

l Need to compensate for all of this

18

Gamma correction

l Response of all parts understood (or just measured)
l Correct: uniform perceived color

l Normally table driven
l 0…255 in (linear intensity scale)
l 0…N out to drive guns

§ N=1024 or 2048 typical

19

Unfortunately, gamma correction
not always done

l E.g., TV is not gamma corrected

Knowing RGB values does not tell you what color you will get!

l For systems you control: do gamma correction

20

24 bits/pixel => “true color,” but
what if we have less?

l 16 bits/pixel
l 5 each in RGB with 1 left over
l decent range (32 gradations each)

l Unfortunately often only get 8
l 3 bits for GB, 2 for R
l not enough
l Use a “trick” instead

21

Color lookup tables (CLUTs)

R G B
0:

R G B
1:

17 236 129
2:

R G B
255:

...
2

l Extra piece of hardware
l Use value in FB as index into CLUT

l e.g. 8 bit pixel => entries 0…255

l Each entry in CLUT has full RBG value used to drive 3 guns

22

Palettes

l 8 bits / pixel with CLUT
l Gives “palette” of 256 different colors
l Chosen from 16M
l Can do a lot better than uniform by picking a good palette for

the image to be displayed (nice algorithms for doing this)

Imaging Models
What does the hardware “look like” to the higher
levels of software?

23

24

Software models of output
(Imaging models)

l Start out by abstracting the HW
l What does the hardware “look like” to the higher levels of

software?
l Earliest imaging models abstracted early hardware: vector

refresh
l stroke or vector (line only) models

l “Display list” containing end points of lines to be drawn
l System just cycles through the display list, moving the electron

gun between endpoints
l Arbitrarily positionable electron gun, rather than the “sweep”

pattern seen in raster imaging.

25

Vector models

l Advantages
l can freely apply mathematical xforms

l Scale rotate, translate
l Only have to manipulate endpoints

l Disadvantages
l limited / low fidelity images

l wireframe, no solids, no shading

26

Current dominant: Raster models

l Most systems provide model pretty close to raster display HW
l integer coordinate system
l 0,0 typically at top-left with Y down
l all drawing primitives done by filling in pixel color values (values

in FB)

27

Issue: Dynamics

l Suppose we want to “rubber-band” a line
over complex
background

l Drawing line is relatively easy
l But how do we “undraw” it?

28

Undrawing things in raster model
l Ideas?

(red, su, xo, pal, fwd)

29

Undrawing things in raster
models	

lFour solutions:
l1) Redraw method

lRedraw all the stuff under
lThen redraw the line

l Relatively expensive (but HW is fast)
lNote: don’t have to redraw all, just “damaged” area

l Simplest and most robust (back)

30

How to undraw

l 2) “Save-unders”
l When you draw the line, remember what pixel values were

“under” it
l To undraw, put back old values
l Issue: (what is it?)

31

How to undraw
l 2) “Save-unders”

l When you draw the line, remember what pixel values were “under” it
l To undraw, put back old values
l Issue: what if “background” changes

l Tends to either be complex or not robust (back)
l Typically used only in special cases

32

How to undraw

l 3) Use bit manipulation of colors
l Colors stored as bits
l Instead of replacing bits XOR with what is already there

l A ^ B ^ B == ?

33

How to undraw

l 3) Use bit manipulation of colors
l Colors stored as bits
l Instead of replacing bits XOR with what is already there

l A ^ B ^ B == A (for any A and B)
l Draw line by XOR with some color
l Undraw line by XOR with same color

34

Issue with XOR?

l What is it?

35

Issue with XOR

l Colors unpredictable
l SomeColor ^ Blue == ??

l Don’t know what color you will get
l Not assured of good contrast

§ Ways to pick 2nd color to maximize contrast, but still get “wild” colors

36

Undraw with XOR

l Advantage of XOR undraw
l Fast
l Don’t have to worry about what is “under” the drawing, just

draw
l In the past used a lot where dynamics needed

l May not be justified on current HW (back)

37

How to undraw

l 4) Simulate independent bit-planes using CLUT “tricks”
l Won’t consider details, but can use tricks with CLUT to simulate

set of transparent layers
l Probably don’t want to use this solution, but sometimes used for

special cases like cursors (back)

38

Higher level imaging models

l Simple pixel/raster model is somewhat impoverished
l Integer coordinate system
l No rotation (or good scaling)
l Not very device independent

39

Higher level imaging models

l Would like:
l Real valued coordinate system

l oriented as Descarte intended?
l Support for full transformations

l real scale and rotate
l Richer primitives

l curves

Stencil-and-Paint

40

41

Higher level imaging models

l Would like:
l Real valued coordinate system

l oriented as Descarte intended?
l Support for full transformations

l real scale and rotate
l Richer primitives

l curves

42

Stencil and paint model

l All drawing modeled as placing paint on a surface through a
“stencil”
l Stencil modeled as closed curves (e.g., splines)

l Issue: how do we draw lines?

43

Stencil and paint model
l All drawing modeled as placing paint on a surface through a

“stencil”
l Modeled as closed curves (splines)

l Issue: how do we draw lines?
l (Conceptually) very thin stencil along direction of line
l Actually special case & use line alg.

44

Stencil and paint model

l Original model used only opaque paint
l Modeled hardcopy devices this was developed for (at Xerox PARC)

l Current systems now support “paint” that combines with “paint”
already under it
l e.g., translucent paint (“alpha” values)

45

Stencil and paint examples
l In most cases, implemented at a much higher layer than the raw hardware

(e.g., in the Window System or Toolkit, which we’ll talk about soon...)

l Postscript is based on this approach
l Implemented in printer’s hardware (often)

l NeXTstep: Display Postscript
l Brought same imaging model used for hardcopy output to interactive graphics

l Mac OS X
l Derived from NeXTstep, uses DisplayPDF as its imaging model

l Windows, starting with Vista
l Aero

l New Java drawing model (Java2D) provides a stencil-and-paint imaging
model, implemented completely in the Toolkit

46

Stencil and paint pros and cons

l Advantages
l Resolution & device independent

l does best job possible on avail HW
l Don’t need to know size of pixels

l Can support full transformations
l rotate & scale

47

Stencil and paint pros and cons

l Disadvantages
l Slower

l Less and less of an issue
l But interactive response tends to be dominated by redraw time

l Much harder to implement

48

Stencil and paint pros and cons

l Stencil and paint type models generally the way to go
l But have been slow to catch on

l Market forces tend to keep us with old models
l Much harder to implement

l Finally became mainstream around 2006

